반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
Tags
- 딥러닝 엔트로피
- vlm
- vlm hallucination
- 객체 검출
- vlm hallucination paper
- 이미지 필터링
- clip
- 기계학습
- 논문 리뷰
- object detection
- vlm 환각
- 논문 요약
- evaluating object hallucination in large vision-language models paper
- mobilenetv1
- evaluating object hallucination in large vision-language models 논문
- dinov2 논문 리뷰
- 원격 학습 안끊기게
- 에지 검출
- polling-based object probing evaluation
- vlm 환각이란
- dinov2: learning robust visual features without supervision 논문 리뷰
- dinov2: learning robust visual features without supervision 논문
- blip-2
- 엔트로피란
- Object detection article
- 1차 미분 마스크
- 딥러닝 목적함수
- dinov2: learning robust visual features without supervision
- clip adapter
- evaluating object hallucination in large vision-language models
Archives
- Today
- Total
목록2025/03/18 (1)
My Vision, Computer Vision

DoRA: Weight-Decomposed Low-Rank AdaptationAmong the widely used parameter-efficient fine-tuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and fullarxiv.org Author : Liu, Shih-Yang, et al.Journal : ICML 2024Keyword : DoRAPublished Date : 2024년 2월..
Paper
2025. 3. 18. 16:46