일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- mobilenetv1
- vlm
- polling-based object probing evaluation
- dinov2: learning robust visual features without supervision 논문
- 논문 요약
- evaluating object hallucination in large vision-language models
- dinov2: learning robust visual features without supervision
- clip adapter
- vlm 환각
- 객체 검출
- evaluating object hallucination in large vision-language models paper
- 엔트로피란
- 기계학습
- vlm hallucination paper
- object detection
- 딥러닝 엔트로피
- clip
- evaluating object hallucination in large vision-language models 논문
- dinov2 논문 리뷰
- Object detection article
- 1차 미분 마스크
- 원격 학습 안끊기게
- 이미지 필터링
- 논문 리뷰
- dinov2: learning robust visual features without supervision 논문 리뷰
- vlm 환각이란
- 에지 검출
- blip-2
- vlm hallucination
- 딥러닝 목적함수
- Today
- Total
목록mobilenetv1 (2)
My Vision, Computer Vision

MobileNetV2: Inverted Residuals and Linear BottlenecksIn this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of apparxiv.orgAbstractMobileNet V1의 성능을 개선Object detection에 효율적인 적용 방법 SSDLite 소개Semantic seg..

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications We present a class of efficient models called MobileNets for mobile and embedded vision applications. MobileNets are based on a streamlined architecture that uses depth-wise separable convolutions to build light weight deep neural networks. We introduce tw arxiv.org Abstract MobileNet 탄생 배경 : 모바일 및 임베디드 비전 응용 프로그램..