반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
Tags
- object detection
- Object detection article
- 객체 검출
- dinov2: learning robust visual features without supervision 논문 리뷰
- dinov2 논문 리뷰
- dinov2: learning robust visual features without supervision
- evaluating object hallucination in large vision-language models paper
- vlm 환각이란
- 딥러닝 목적함수
- 기계학습
- clip adapter
- vlm hallucination paper
- vlm 환각
- evaluating object hallucination in large vision-language models
- vlm
- mobilenetv1
- 엔트로피란
- blip-2
- 에지 검출
- clip
- vlm hallucination
- 1차 미분 마스크
- dinov2: learning robust visual features without supervision 논문
- polling-based object probing evaluation
- 원격 학습 안끊기게
- 이미지 필터링
- 딥러닝 엔트로피
- 논문 리뷰
- evaluating object hallucination in large vision-language models 논문
- 논문 요약
Archives
- Today
- Total
목록2025/03/18 (1)
My Vision, Computer Vision

DoRA: Weight-Decomposed Low-Rank AdaptationAmong the widely used parameter-efficient fine-tuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and fullarxiv.org Author : Liu, Shih-Yang, et al.Journal : ICML 2024Keyword : DoRAPublished Date : 2024년 2월..
Paper
2025. 3. 18. 16:46