반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
Tags
- 이미지 필터링
- dinov2 논문 리뷰
- evaluating object hallucination in large vision-language models 논문
- dinov2: learning robust visual features without supervision
- vlm hallucination
- Object detection article
- 딥러닝 목적함수
- vlm hallucination paper
- clip adapter
- 객체 검출
- vlm 환각이란
- clip
- 논문 요약
- 딥러닝 엔트로피
- evaluating object hallucination in large vision-language models
- object detection
- 기계학습
- 엔트로피란
- 에지 검출
- polling-based object probing evaluation
- vlm
- 논문 리뷰
- 1차 미분 마스크
- vlm 환각
- evaluating object hallucination in large vision-language models paper
- mobilenetv1
- dinov2: learning robust visual features without supervision 논문 리뷰
- dinov2: learning robust visual features without supervision 논문
- blip-2
- 원격 학습 안끊기게
Archives
- Today
- Total
목록2025/03/04 (1)
My Vision, Computer Vision

TinyLLaVA: A Framework of Small-scale Large Multimodal ModelsWe present the TinyLLaVA framework that provides a unified perspective in designing and analyzing the small-scale Large Multimodal Models (LMMs). We empirically study the effects of different vision encoders, connection modules, language models, training darxiv.orgJournal: ArxivPublished Date: 2024년 2월 22일본 논문은 TinyLLaVA 프레임워크를 소개한다.또한..
Paper
2025. 3. 4. 19:12