반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
Tags
- 딥러닝 목적함수
- dinov2: learning robust visual features without supervision
- evaluating object hallucination in large vision-language models 논문
- 이미지 필터링
- vlm hallucination
- dinov2: learning robust visual features without supervision 논문
- dinov2: learning robust visual features without supervision 논문 리뷰
- polling-based object probing evaluation
- object detection
- 객체 검출
- 논문 리뷰
- Object detection article
- blip-2
- 딥러닝 엔트로피
- vlm 환각이란
- dinov2 논문 리뷰
- 에지 검출
- vlm hallucination paper
- evaluating object hallucination in large vision-language models paper
- vlm
- evaluating object hallucination in large vision-language models
- 1차 미분 마스크
- 기계학습
- 논문 요약
- vlm 환각
- 엔트로피란
- clip
- mobilenetv1
- clip adapter
- 원격 학습 안끊기게
Archives
- Today
- Total
목록2025/03/17 (1)
My Vision, Computer Vision

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftTraining Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful paramarxiv.org Author : Ioffe, Sergey, and Christian Sz..
Paper
2025. 3. 17. 20:14