일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- clip adapter
- lavt 논문
- Object detection article
- taling2dino 논문 리뷰
- 엔트로피란
- blip-2
- 1차 미분 마스크
- 이미지 필터링
- 객체 검출
- talking to dino
- open vocabulary segmentation
- pwam 논문
- mobilenetv1
- pwam paper
- talking2dino 논문
- 논문 리뷰
- 에지 검출
- object detection
- 기계학습
- open vocabulary
- vlm
- 논문 요약
- clip
- talking2dino
- talking to dino: bridging self-supervised vision backbones with language for open-vocabulary segmentation
- talking2dino paper
- 딥러닝 목적함수
- 원격 학습 안끊기게
- 딥러닝 엔트로피
- swin tramsformer
- Today
- Total
목록Object detection article (2)
My Vision, Computer Vision

A Survey of Modern Deep Learning based Object Detection Models Object Detection is the task of classification and localization of objects in an image or video. It has gained prominence in recent years due to its widespread applications. This article surveys recent developments in deep learning based object detectors. arxiv.org 이전 글에서 이어집니다. A Survey of Modern Deep Learning based Object Detection..

A Survey of Modern Deep Learning based Object Detection Models Object Detection is the task of classification and localization of objects in an image or video. It has gained prominence in recent years due to its widespread applications. This article surveys recent developments in deep learning based object detectors. arxiv.org 이 논문은 2021년 쓰였다. 2012년 AlexNet의 등장으로 CNN이 본격적으로 재조명된 후부터 Object detec..