반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- vlm
- 1차 미분 마스크
- evaluating object hallucination in large vision-language models paper
- evaluating object hallucination in large vision-language models 논문
- 논문 리뷰
- evaluating object hallucination in large vision-language models
- vlm hallucination paper
- blip-2
- polling-based object probing evaluation
- 이미지 필터링
- 논문 요약
- 객체 검출
- dinov2: learning robust visual features without supervision
- Object detection article
- vlm hallucination
- vlm 환각이란
- dinov2: learning robust visual features without supervision 논문
- vlm 환각
- 에지 검출
- 딥러닝 목적함수
- clip adapter
- 엔트로피란
- 딥러닝 엔트로피
- 기계학습
- clip
- mobilenetv1
- object detection
- dinov2: learning robust visual features without supervision 논문 리뷰
- 원격 학습 안끊기게
- dinov2 논문 리뷰
Archives
- Today
- Total
목록딥러닝 dora (1)
My Vision, Computer Vision

DoRA: Weight-Decomposed Low-Rank AdaptationAmong the widely used parameter-efficient fine-tuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and fullarxiv.org Author : Liu, Shih-Yang, et al.Journal : ICML 2024Keyword : DoRAPublished Date : 2024년 2월..
Paper
2025. 3. 18. 16:46