반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- Object detection article
- 기계학습
- evaluating object hallucination in large vision-language models paper
- 객체 검출
- dinov2: learning robust visual features without supervision 논문 리뷰
- 이미지 필터링
- 논문 요약
- clip adapter
- 논문 리뷰
- dinov2 논문 리뷰
- vlm 환각
- clip
- 1차 미분 마스크
- vlm hallucination
- object detection
- evaluating object hallucination in large vision-language models 논문
- 엔트로피란
- mobilenetv1
- vlm hallucination paper
- blip-2
- vlm 환각이란
- 에지 검출
- 딥러닝 목적함수
- dinov2: learning robust visual features without supervision
- dinov2: learning robust visual features without supervision 논문
- vlm
- polling-based object probing evaluation
- 원격 학습 안끊기게
- evaluating object hallucination in large vision-language models
- 딥러닝 엔트로피
Archives
- Today
- Total
목록딥러닝 dora (1)
My Vision, Computer Vision

DoRA: Weight-Decomposed Low-Rank AdaptationAmong the widely used parameter-efficient fine-tuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and fullarxiv.org Author : Liu, Shih-Yang, et al.Journal : ICML 2024Keyword : DoRAPublished Date : 2024년 2월..
Paper
2025. 3. 18. 16:46