반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 원격 학습 안끊기게
- dinov2 논문 리뷰
- 이미지 필터링
- evaluating object hallucination in large vision-language models 논문
- 기계학습
- dinov2: learning robust visual features without supervision 논문 리뷰
- 논문 리뷰
- 논문 요약
- vlm 환각
- vlm 환각이란
- evaluating object hallucination in large vision-language models
- 엔트로피란
- vlm hallucination paper
- 1차 미분 마스크
- dinov2: learning robust visual features without supervision
- 객체 검출
- 에지 검출
- clip
- mobilenetv1
- 딥러닝 목적함수
- blip-2
- object detection
- dinov2: learning robust visual features without supervision 논문
- Object detection article
- evaluating object hallucination in large vision-language models paper
- vlm hallucination
- clip adapter
- vlm
- 딥러닝 엔트로피
- polling-based object probing evaluation
Archives
- Today
- Total
목록dora paper (1)
My Vision, Computer Vision

DoRA: Weight-Decomposed Low-Rank AdaptationAmong the widely used parameter-efficient fine-tuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and fullarxiv.org Author : Liu, Shih-Yang, et al.Journal : ICML 2024Keyword : DoRAPublished Date : 2024년 2월..
Paper
2025. 3. 18. 16:46