반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 에지 검출
- 엔트로피란
- Object detection article
- 원격 학습 안끊기게
- 딥러닝 목적함수
- vlm hallucination paper
- clip adapter
- 객체 검출
- object detection
- dinov2: learning robust visual features without supervision 논문
- blip-2
- vlm 환각
- 논문 리뷰
- 1차 미분 마스크
- dinov2: learning robust visual features without supervision
- vlm
- 논문 요약
- dinov2 논문 리뷰
- 기계학습
- vlm 환각이란
- 딥러닝 엔트로피
- dinov2: learning robust visual features without supervision 논문 리뷰
- evaluating object hallucination in large vision-language models 논문
- 이미지 필터링
- vlm hallucination
- clip
- evaluating object hallucination in large vision-language models paper
- evaluating object hallucination in large vision-language models
- mobilenetv1
- polling-based object probing evaluation
Archives
- Today
- Total
목록dora 논문 (1)
My Vision, Computer Vision

DoRA: Weight-Decomposed Low-Rank AdaptationAmong the widely used parameter-efficient fine-tuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and fullarxiv.org Author : Liu, Shih-Yang, et al.Journal : ICML 2024Keyword : DoRAPublished Date : 2024년 2월..
Paper
2025. 3. 18. 16:46