반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 이미지 필터링
- vlm hallucination paper
- vlm hallucination
- clip
- 에지 검출
- vlm
- object detection
- blip-2
- vlm 환각
- polling-based object probing evaluation
- dinov2: learning robust visual features without supervision 논문
- Object detection article
- 엔트로피란
- 객체 검출
- 기계학습
- evaluating object hallucination in large vision-language models 논문
- 1차 미분 마스크
- evaluating object hallucination in large vision-language models paper
- mobilenetv1
- dinov2 논문 리뷰
- dinov2: learning robust visual features without supervision
- 원격 학습 안끊기게
- dinov2: learning robust visual features without supervision 논문 리뷰
- 논문 리뷰
- 논문 요약
- vlm 환각이란
- clip adapter
- 딥러닝 목적함수
- 딥러닝 엔트로피
- evaluating object hallucination in large vision-language models
Archives
- Today
- Total
목록dora (1)
My Vision, Computer Vision

DoRA: Weight-Decomposed Low-Rank AdaptationAmong the widely used parameter-efficient fine-tuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and fullarxiv.org Author : Liu, Shih-Yang, et al.Journal : ICML 2024Keyword : DoRAPublished Date : 2024년 2월..
Paper
2025. 3. 18. 16:46