반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- blip-2
- 기계학습
- dinov2: learning robust visual features without supervision 논문 리뷰
- 논문 리뷰
- mobilenetv1
- evaluating object hallucination in large vision-language models 논문
- dinov2: learning robust visual features without supervision
- dinov2: learning robust visual features without supervision 논문
- object detection
- evaluating object hallucination in large vision-language models paper
- 1차 미분 마스크
- 딥러닝 목적함수
- vlm
- vlm hallucination
- 에지 검출
- evaluating object hallucination in large vision-language models
- Object detection article
- 객체 검출
- 딥러닝 엔트로피
- vlm hallucination paper
- clip
- vlm 환각
- 논문 요약
- 이미지 필터링
- polling-based object probing evaluation
- 원격 학습 안끊기게
- vlm 환각이란
- 엔트로피란
- clip adapter
- dinov2 논문 리뷰
Archives
- Today
- Total
목록batch normalization paper (1)
My Vision, Computer Vision

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftTraining Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful paramarxiv.org Author : Ioffe, Sergey, and Christian Sz..
Paper
2025. 3. 17. 20:14