반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 에지 검출
- evaluating object hallucination in large vision-language models paper
- dinov2: learning robust visual features without supervision 논문
- vlm hallucination paper
- vlm
- 엔트로피란
- 논문 요약
- Object detection article
- vlm 환각이란
- object detection
- 기계학습
- mobilenetv1
- 객체 검출
- 이미지 필터링
- 딥러닝 목적함수
- evaluating object hallucination in large vision-language models
- dinov2: learning robust visual features without supervision 논문 리뷰
- dinov2 논문 리뷰
- dinov2: learning robust visual features without supervision
- clip adapter
- evaluating object hallucination in large vision-language models 논문
- vlm hallucination
- 딥러닝 엔트로피
- polling-based object probing evaluation
- 원격 학습 안끊기게
- vlm 환각
- 논문 리뷰
- 1차 미분 마스크
- clip
- blip-2
Archives
- Today
- Total
목록batch normalization (1)
My Vision, Computer Vision

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftTraining Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful paramarxiv.org Author : Ioffe, Sergey, and Christian Sz..
Paper
2025. 3. 17. 20:14