반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- vlm 환각
- blip-2
- 딥러닝 엔트로피
- evaluating object hallucination in large vision-language models 논문
- evaluating object hallucination in large vision-language models
- Object detection article
- vlm
- dinov2 논문 리뷰
- evaluating object hallucination in large vision-language models paper
- vlm hallucination paper
- clip adapter
- clip
- 객체 검출
- dinov2: learning robust visual features without supervision
- 이미지 필터링
- 논문 리뷰
- 엔트로피란
- 논문 요약
- object detection
- vlm hallucination
- dinov2: learning robust visual features without supervision 논문 리뷰
- vlm 환각이란
- 기계학습
- 원격 학습 안끊기게
- dinov2: learning robust visual features without supervision 논문
- mobilenetv1
- polling-based object probing evaluation
- 딥러닝 목적함수
- 에지 검출
- 1차 미분 마스크
Archives
- Today
- Total
목록Object detection models (1)
My Vision, Computer Vision

A Survey of Modern Deep Learning based Object Detection Models Object Detection is the task of classification and localization of objects in an image or video. It has gained prominence in recent years due to its widespread applications. This article surveys recent developments in deep learning based object detectors. arxiv.org 이전 글에서 이어집니다. A Survey of Modern Deep Learning based Object Detection..
Paper
2024. 2. 15. 17:14