반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 원격 학습 안끊기게
- Object detection article
- 엔트로피란
- vlm hallucination paper
- 논문 리뷰
- 에지 검출
- vlm hallucination
- 1차 미분 마스크
- object detection
- clip adapter
- 객체 검출
- 딥러닝 목적함수
- dinov2: learning robust visual features without supervision 논문 리뷰
- 기계학습
- dinov2: learning robust visual features without supervision
- evaluating object hallucination in large vision-language models
- blip-2
- 논문 요약
- vlm 환각이란
- vlm
- evaluating object hallucination in large vision-language models 논문
- clip
- polling-based object probing evaluation
- mobilenetv1
- dinov2 논문 리뷰
- 이미지 필터링
- evaluating object hallucination in large vision-language models paper
- vlm 환각
- 딥러닝 엔트로피
- dinov2: learning robust visual features without supervision 논문
Archives
- Today
- Total
목록배치 정규화란 (1)
My Vision, Computer Vision

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftTraining Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful paramarxiv.org Author : Ioffe, Sergey, and Christian Sz..
Paper
2025. 3. 17. 20:14