반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 객체 검출
- object detection
- 딥러닝 목적함수
- dinov2: learning robust visual features without supervision
- clip
- blip-2
- 기계학습
- evaluating object hallucination in large vision-language models
- dinov2: learning robust visual features without supervision 논문
- dinov2 논문 리뷰
- vlm hallucination paper
- evaluating object hallucination in large vision-language models paper
- 논문 리뷰
- vlm 환각
- clip adapter
- evaluating object hallucination in large vision-language models 논문
- 딥러닝 엔트로피
- 에지 검출
- 1차 미분 마스크
- polling-based object probing evaluation
- mobilenetv1
- vlm 환각이란
- 논문 요약
- vlm hallucination
- 엔트로피란
- dinov2: learning robust visual features without supervision 논문 리뷰
- 이미지 필터링
- Object detection article
- vlm
- 원격 학습 안끊기게
Archives
- Today
- Total
목록배치 정규화 paper (1)
My Vision, Computer Vision

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftTraining Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful paramarxiv.org Author : Ioffe, Sergey, and Christian Sz..
Paper
2025. 3. 17. 20:14