반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 객체 검출
- polling-based object probing evaluation
- vlm 환각이란
- vlm hallucination paper
- 엔트로피란
- vlm 환각
- dinov2: learning robust visual features without supervision 논문 리뷰
- vlm
- evaluating object hallucination in large vision-language models paper
- blip-2
- 논문 리뷰
- evaluating object hallucination in large vision-language models
- evaluating object hallucination in large vision-language models 논문
- dinov2 논문 리뷰
- Object detection article
- 딥러닝 엔트로피
- dinov2: learning robust visual features without supervision 논문
- 논문 요약
- 원격 학습 안끊기게
- 이미지 필터링
- object detection
- dinov2: learning robust visual features without supervision
- 에지 검출
- 딥러닝 목적함수
- clip
- mobilenetv1
- 기계학습
- vlm hallucination
- 1차 미분 마스크
- clip adapter
Archives
- Today
- Total
목록배치 정규화 (1)
My Vision, Computer Vision

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftTraining Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful paramarxiv.org Author : Ioffe, Sergey, and Christian Sz..
Paper
2025. 3. 17. 20:14