반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 원격 학습 안끊기게
- blip-2
- clip
- vlm 환각
- 1차 미분 마스크
- 논문 리뷰
- vlm 환각이란
- clip adapter
- 딥러닝 목적함수
- mobilenetv1
- polling-based object probing evaluation
- evaluating object hallucination in large vision-language models
- 이미지 필터링
- vlm hallucination
- evaluating object hallucination in large vision-language models paper
- dinov2: learning robust visual features without supervision 논문
- evaluating object hallucination in large vision-language models 논문
- object detection
- dinov2: learning robust visual features without supervision 논문 리뷰
- 기계학습
- 딥러닝 엔트로피
- vlm
- Object detection article
- 에지 검출
- 논문 요약
- 엔트로피란
- vlm hallucination paper
- 객체 검출
- dinov2: learning robust visual features without supervision
- dinov2 논문 리뷰
Archives
- Today
- Total
목록딥러닝 배치 정규화란 (1)
My Vision, Computer Vision

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftTraining Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful paramarxiv.org Author : Ioffe, Sergey, and Christian Sz..
Paper
2025. 3. 17. 20:14