반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 1차 미분 마스크
- 기계학습
- dinov2: learning robust visual features without supervision
- 딥러닝 엔트로피
- mobilenetv1
- vlm hallucination paper
- 엔트로피란
- vlm 환각
- dinov2 논문 리뷰
- vlm hallucination
- evaluating object hallucination in large vision-language models 논문
- vlm
- 이미지 필터링
- dinov2: learning robust visual features without supervision 논문 리뷰
- polling-based object probing evaluation
- evaluating object hallucination in large vision-language models paper
- blip-2
- 논문 요약
- 원격 학습 안끊기게
- Object detection article
- 에지 검출
- clip adapter
- vlm 환각이란
- clip
- 딥러닝 목적함수
- object detection
- dinov2: learning robust visual features without supervision 논문
- evaluating object hallucination in large vision-language models
- 논문 리뷰
- 객체 검출
Archives
- Today
- Total
목록딥러닝 배치 정규화 (1)
My Vision, Computer Vision

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftTraining Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful paramarxiv.org Author : Ioffe, Sergey, and Christian Sz..
Paper
2025. 3. 17. 20:14