반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 딥러닝 목적함수
- evaluating object hallucination in large vision-language models paper
- clip adapter
- dinov2 논문 리뷰
- 엔트로피란
- 논문 요약
- Object detection article
- mobilenetv1
- object detection
- vlm 환각이란
- 에지 검출
- 객체 검출
- evaluating object hallucination in large vision-language models 논문
- dinov2: learning robust visual features without supervision 논문
- dinov2: learning robust visual features without supervision
- evaluating object hallucination in large vision-language models
- 1차 미분 마스크
- polling-based object probing evaluation
- 이미지 필터링
- vlm hallucination paper
- blip-2
- vlm hallucination
- 기계학습
- 딥러닝 엔트로피
- dinov2: learning robust visual features without supervision 논문 리뷰
- 원격 학습 안끊기게
- vlm 환각
- clip
- vlm
- 논문 리뷰
Archives
- Today
- Total
목록딥러닝 모델 배치 정규화 (1)
My Vision, Computer Vision

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftTraining Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful paramarxiv.org Author : Ioffe, Sergey, and Christian Sz..
Paper
2025. 3. 17. 20:14