반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- polling-based object probing evaluation
- vlm 환각
- evaluating object hallucination in large vision-language models paper
- 딥러닝 목적함수
- dinov2: learning robust visual features without supervision 논문 리뷰
- dinov2: learning robust visual features without supervision
- 엔트로피란
- 1차 미분 마스크
- evaluating object hallucination in large vision-language models 논문
- evaluating object hallucination in large vision-language models
- 논문 리뷰
- dinov2: learning robust visual features without supervision 논문
- 원격 학습 안끊기게
- 기계학습
- blip-2
- vlm hallucination paper
- 객체 검출
- object detection
- 딥러닝 엔트로피
- dinov2 논문 리뷰
- clip adapter
- clip
- vlm hallucination
- Object detection article
- vlm 환각이란
- 이미지 필터링
- 에지 검출
- mobilenetv1
- 논문 요약
- vlm
Archives
- Today
- Total
목록객체 검출 서베이 논문 (1)
My Vision, Computer Vision

A Survey of Modern Deep Learning based Object Detection Models Object Detection is the task of classification and localization of objects in an image or video. It has gained prominence in recent years due to its widespread applications. This article surveys recent developments in deep learning based object detectors. arxiv.org 이전 글에서 이어집니다. A Survey of Modern Deep Learning based Object Detection..
Paper
2024. 2. 15. 17:14