반응형
250x250
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- dinov2 논문 리뷰
- vlm hallucination paper
- vlm hallucination
- evaluating object hallucination in large vision-language models 논문
- dinov2: learning robust visual features without supervision 논문 리뷰
- evaluating object hallucination in large vision-language models
- clip adapter
- 1차 미분 마스크
- object detection
- 기계학습
- 원격 학습 안끊기게
- 이미지 필터링
- 딥러닝 목적함수
- dinov2: learning robust visual features without supervision
- 논문 요약
- 객체 검출
- 딥러닝 엔트로피
- polling-based object probing evaluation
- clip
- 에지 검출
- mobilenetv1
- 엔트로피란
- vlm
- vlm 환각이란
- vlm 환각
- Object detection article
- dinov2: learning robust visual features without supervision 논문
- blip-2
- 논문 리뷰
- evaluating object hallucination in large vision-language models paper
Archives
- Today
- Total
목록dinov2 모델 (1)
My Vision, Computer Vision

DINOv2: Learning Robust Visual Features without SupervisionThe recent breakthroughs in natural language processing for model pretraining on large quantities of data have opened the way for similar foundation models in computer vision. These models could greatly simplify the use of images in any system by producingarxiv.org Author : MLAOquab, Maxime, et al.Journal : ArxivKeyword : dinov2Published..
Paper
2025. 3. 31. 14:39